Basic Optics: What You Need To Know Lynn Lawrence, CPOT, ABOC, COA, OSC

Disclaimer

- Please prepare for certification testing with materials from the organization in which you want your certification granted i.e.:
- AOA • JCAHPO • ABO • NCLE • OT

Outline

- •The Visual System
- Physiology
 Ametropia: •Ophthalmic Lenses
- Properties of Light
 UV, Visible, and Infrared Spectrums
 Reflection, Refraction, & Absorption
 Aberrations
 Lens Designs
 Fitting
- Basic Optical Formulas

The Visual System

The Visual System

The Visual System

Cornea The tear film maintains both the health and optics of the cornea...

The Visual System Crystalline Lens The crystalline lens has a power of around +12-18 diopters...

...it is primarily responsible for changing the eye's focal point...a term referred to as accommodation

The Visual System

The retina is the "film" or sensory body....

The Visual System

Retina

Light is converted to electrical impulses which are sent through the optic nerve...

...the "blind spot" is the point at which the optic nerve connects

1

The Visual System

Eye Movement or ocular motility

The eye is connected to the orbit by several muscles which control movement...

Visual Anomalies

Visual Anomalies

Visual Anomalies

Visual Anomalies

Visual Anomalies

Ametropias As the eye ages, the crystalline lens loses flexibility....

...this results in a condition known as *"presbyopia"*

Visual Anomalies

Presbyopia

The inability to focus on near objects becomes noticeable around age 40 and steadily worsens thereafter...

Ophthalmic Lenses

Ophthalmic Lenses

Properties of Light

Like the artist's paint, the eye requires light to see...

...what is "light," and how does it work?

Properties of Light

So what is light? ● particles in the form of a wave ● electromagnetic radiation with wavelengths

electromagnetic radiation with wavelengths between 400 and 700 nanometers (a nanometer is 1/1,000,000th mm) is considered the visible spectrum white light is composed of all wavelengths Electromagnetic Spectrum that wavelengths spectrum that wa

Ophthalmic Lenses

Properties of Light

So what is light?

visible light is a small portion of the overall spectrum of light
EM surrounding the visible spectrum is hazardous

Ultra-Violet is <390nm
Infrared is >720nm

Ophthalmic Lenses

Properties of Light Ultra-Violet Radiation

UVA is less photobiologically active than UVB and consists of light just beyond the blue end of the visible spectrum...

Ophthalmic Lenses

Properties of Light Ultra-Violet Radiation

UVB fails farther from the visible spectrum, is the most significant UV most of us experience, and is variably absorbed by ozone...

Ophthalmic Lenses

UVC light is farthest from the visible spectrum, and is almost completely absorbed by ozone (except at very high altitudes).....

Ophthalmic Lenses

Properties of Light

Infrared is >720nm- the most common source is blown glass...

Ophthalmic Lenses

Properties of Light

Light moves in wave form along a straight line...

... the distance between peaks determines wavelength

Ophthalmic Lenses

As light spreads from a point, it forms a wavefront...

Ophthalmic Lenses

Properties of Light

Movement of Light

Wavefronts interact with lenses in 3 ways

Every lens has a "critical angle"...

...light striking the lens flatter than this angle will be reflected

Ophthalmic Lenses

...the amount of refraction depends on the amount of prism

Ophthalmic Lenses

Ophthalmic Lenses

Vision & Ametropias

When light is not focused on the retina, an ametropia is present... for example, a myopic eye focuses light in front of the retina...

Vision & Ametropias

Vision & Ametropias

A **hyperopic** eye focuses light behind the retina...

Vision & Ametropias

...a plus powered (converging) lens shifts the focus up to the retina

Vision & Ametropias

Astigmatism causes light along different axes to focus at different planes...

Vision & Ametropias

Vision & Ametropias

Vision & Ametropias

...as the crystalline lens ages, it loses its flexibility- and its ability to adjust focus... this condition is called **presbyopia** and typically becomes noticeable around age <u>40</u>

Vision & Ametropias

To restore near vision, the required convergence is supplied by a plus powered lens...

Vision & Ametropias

Ophthalmic Lenses

...this is called dispersion and results in chromatic aberration

Ophthalmic Lenses

Properties of Light Refraction - Dispersion

Abbe value is used to describe the amount of dispersion a material will create...

...ranges are from 59 (CR-39) to 30 (polycarbonate)

Chromatic Aberration

Ophthalmic Lenses

- Properties of Light
- Absorption

A dark lens absorbs light...

Ophthalmic Lenses

Properties of Light Absorption

.....

Filters absorb light. Chemical compounds are used to selectively filter single colors.

To create a green filter, only red light must be absorbed. The appropriate chemicals are applied, and a green filter is created.

Ophthalmic Lenses

Properties of Light

Absorption

To create a perfectly neutral- or gray- filter, energy from all three primary points in the spectrum must be absorbed to the same degree.

When creating a filter by absorbing dye into resin, this process is further complicated by the inconsistent nature of the chemicals involved.

Ophthalmic Lenses

Properties of Light

perrations

The most common aberrations found in ophthalmic lenses are:

- Power Error
- Material Distortion
- Marginal Astigmatism
- Chromatic Aberration
- Unwanted Prism*

Ophthalmic Lenses

Aberrations occur due to various factors:

Refractive power
 Off-axis viewing of objects
 lens tilt
 peripheral objects
 Vertex distance
 Lens material

Ophthalmic Lenses

Properties of Light

Aberrations – Power Error

Spherical lenses are stronger in the periphery...

Ophthalmic Lenses

Properties of Light

Aberrations - Distortion

The minus lens result is barrel distortion...

豊田井	日日日
+++++++++++++++++++++++++++++++++++++++	
21111	1111115
he minimized to a	

...the periphery of an object will be minimized greater degree than the center

Ophthalmic Lenses

Properties of Light Aberrations – Distortion

Plus lenses create the opposite effect...pincushion effect

Aspheric lenses reduce distortion

...the periphery of an object will be magnified to a greater degree than the center

Ophthalmic Lenses

Properties of Light

Aberrations – Distortion

Compare a spherical lens to an aspheric lens of equal power...

...notice the central curve & thickness

Properties of Light

Aberrations - Marginal Astign

...unwanted astigmatism occurs

Ophthalmic Lenses

Properties of Light Aberrations – Chromatic Ab

As previously discussed, chromatic aberration is the dispersion of white light into its component colors...

...large amounts of prism are necessary for chromatic aberration to affect vision

Ophthalmic Lenses

Properties of Light Prism

Although prism is not technically an aberration, unwanted prism does affect quality of vision...

Ophthalmic Lenses

Ophthalmic Lenses Lens Types

There are many types of lenses designed to meet specific patient needs...

 Single Vision Distance Vision
 Near & Intermediate Vision Bifocals
 Flat Tops
 Executive
 Trifocals

Ophthalmic Lenses

Lens Types - Single Vision

Single Vision lenses have only one focal length

...single vision lenses can be used to provide clear distance, intermediate, or near vision for presbyopes

Ophthalmic Lenses

Lens Types - Single Vision

The myopic eye focuses light in front of the retina...

Ophthalmic Lenses

"Reading glasses" are also single vision lenses...

...a plus powered single vision lens restores near vision

Ophthalmic Lenses

Lens Types – Single Vision

Lens Types – Single Vision

Single vision lenses require measurement of pupillary distance, and occasionally fitting height...

Ophthalmic Lenses Les Types-Biltocls For near vision, an extra "reading" segment is added...

Ophthalmic Lenses

Ophthalmic Lenses

Lens Types - Bifocals Flat-top bifocals are usually fit:

to lower limbus (seg line @ lower lid)
 decentered 1.5mm in from Far PD

Ophthalmic Lenses

Lens Types – Bifocals

Ophthalmic Lenses

Lens Types – Trifocals

Trifocal lenses have three focal lengths...

Ophthalmic Lenses

Ophthalmic Lenses

Lens Types – Trifocals

Flat-top trifocals are usually fit: • to lower edge of the pupil

Lens Types – Trifocals

There are several types of trifocals suited to different

needs... • Flat Tops • FTT 7/28 • FTT 8/35 • Smart Seg* • Executive (E-Line) • Occupational*

Ophthalmic Lenses

Lens Types – Progressives

Ophthalmic Lenses

Lens Types - Progressives

Progressives are usually fit: • at pupil center

Ophthalmic Lenses

Ophthalmic Lenses

Lens Types – Progressives

PALs require precise fitting if the lens is to perform to its potential, this necessitates: • Monocular pupillary distances • Verification of fitting height

Ophthalmic Lenses

Lens Types – Progressives

There are literally hundreds of PAL designs availableeach with unique characteristics...

Traditional
 hard design
 soft design
 monodesign
 multidesign
 Short Corridor
 Customized
 Task Specific

Basic Formulas

Calculation

There are perhaps two calculations every person who works with eyewear MUST know...

Prentice's Rule
 Box Measurements

Basic Formulas

Basic Formulas

Thank You

Lynn Lawrence, CPOT, ABOC, COA, OSC

martralyn@msn.com

http://lynnslecturehelp.wordpress.com

Information assistance provided by Essilor (Pete Hanlin)