

Basic Optics And **Refractive Principles**

1

Lynn Lawrence, CMSgt(ret), USAF MSOL, CPOT, ABOC, COA, OSC

Disclaimer

- Please prepare for certification testing with materials from the organization in which you want your certification granted i.e.:
- AOA
- JCAHPO
- ABO
- NCLE
- OT

www.quantumoptical.com www.opticianworks.com

2

4

Outline

- The Visual System
 Physiology
 Ametropias
- Ametropias
 Ophthalmic Lenses
 Properties of Light
 UV, Visible, and Infrared Spectrums
 Reflection, Refraction, & Absorption
 Aberrations
 Lens Designs
 Fitting
- Fitting
 Basic Optical Formulas

Prescriptions

What is the Abbe or V-Value of a lens?

Minus and Plus lens

- Minus lens produce a virtual image
- · Corrects for myopia
- Thinner in the middle
- Diverges light rays
- Minifies images
- Apex to apex lens
- Produce virtual focal points Cylinder power on the backside of lens

Info only slide

- Plus lens produce a real image
- · Corrects for hyperopia
- Thicker in the middle
- Converges light rays
- Magnifies images
- Base to base lens Produces a real focal point

The Visual System

There are two main refractive bodies in the human eye...

8

9

7

The Visual System

The retina is the "film" or sensory body...

The Visual System

Retin

Light is converted to electrical impulses which are sent through the optic nerve...

...the "blind spot" is the point at which the optic nerve connects

The Visual System

Eye Movement or ocular motility

The eye is connected to the orbit by several muscles which control movement...

Orbit

14

Visual Anomalies

Visual Anomalies

Visual Anomalies

Presbyopia

The inability to focus on near objects becomes noticeable around age 40 and steadily worsens thereafter...

20

So what is light?

- particles in the form of a wave
- electromagnetic radiation with wavelengths between 400 and 700 nanometers (a nanometer is 1/1,000,000th mm) is considered the visible spectrum

white light is composed of all wavelengths
 Electromagnetic Spectrum

Ophthalmic Lenses

Properties of Light So what is light? • Visible light is a small portion of the overall spectrum of light (380-760) • EM surrounding the visible spectrum is hazardous • Ultra-Violetis <390nm • Infrared is >720nm Electromagnetic Spectrum • $Paint Red = \frac{1}{2} \frac{1}{2} \frac{1}{10^2} \frac{1}{10^6} \frac{1}{10^6} \frac{1}{10^8} \frac{1}{10^{12}} \frac{1}$

What part of the spectrum is most visible to the eye?

	≋ V ≅ B ≋	G SYS OS	R 2
Color	Wavelength	Frequency	Photon energy
violet	380–450 nm	668–789 THz	2.75-3.26 eV
blue	450–495 nm	606–668 THz	2.50-2.75 eV
green	495–570 nm	526-606 THz	2.17-2.50 eV
yellow	570–590 nm	508-526 THz	2.10-2.17 eV
orange	590–620 nm	484–508 THz	2.00-2.10 eV
red	620–750 nm	400–484 THz	1.65-2.00 eV

or

2	-
/	5
~	-

Lenses: Index of Refraction

- Definition: A comparison, or ratio, of the speed of light in air to the speed of light in another medium
- Is a measure of the density of the material
 Values

Speed of light in air in a vacuum: 186,000 mps
 Air= 1.00

Water= 1.33

Lenses: Index of Refraction

 Index of refraction (n)= in a vacuum in a medium
 Speed of light in air/speed of light in material

> The higher the index of refraction, the better the optical quality of the lens

32

Lens Materials: Glass

Crown glass	IR: 1.52
Flint glass	IR: 1.65
Hi-Index glass	IR: 1.9

Advantages: More scratch resistant, clearer optics Disadvantages: Heavier, less impact resistant

Lens Materials: Glass

Crown glass	IR: 1.52
Flint glass	IR: 1.65
Hi-Index glass	IR: 1.9

Advantages: More scratch resistant, clearer optics Disadvantages: Heavier, less impact resistant

34

Lens Materials: Plastic

CR-39	IR: 1.49
Hi-Index plastic	IR: 1.58-1.70

<u>Advantages:</u> Lighter weight, more impact resistant compared to glass, easily tinted <u>Disadvantages</u>: More prone to scratches, less ultra-violet (UV) protection on untreated lens

What does a higher index of refraction mean?

Polycarbonate

- 10x stronger than CR-39
- Safety glasses
- Softer lens so easier to scratch
- Higher index of refraction
- Blocks 99-100% of UV rays
- Requires coating (AR, scratch)
- Lighter than CR-39
- Thinner
- Low Abbe value chromatic aberrations

- Lighter than polycarbonate
- · Slightly lower index of refraction over poly • 10X stronger than polycarbonate
- Optical quality better than polycarbonate
- Natural for outdoor use
- Better for computer use
- More expensive

37

Place these in order from high to low for index of refraction

- A. Polycarbonate • 1. ____
- B. Crown glass • 2_____
- C. CR-39
- 3. _____ D. Trivex
- E. High Index 1.67

• 4. • 5. ____

38

- Place these in order from high to low
- 1. ____1.568_____ A. Polycarbonate
- B. Crown glass • 2____1.52_____
- C. CR-39

for index of refraction

- 3. <u>1.498</u> D. Trivex
- 4. __1.53____ E. High Index 1.67

• 5. __1.67_____

39

Vision & Ametropias

Vision & Ametropias

Vision & Ametropias

A **hyperopic** eye focuses light behind the retina...

44

Vision & Ametropias

45

Vision & Ametropias

Astigmatism causes light along different axes to focus at different planes...

46

Vision & Ametropias

To restore near vision, the required convergence is supplied by a plus powered lens...

Vision & Ametropias

Ophthalmic Lenses

Properties of Light

Refraction - Dispersion

Abbe value is used to describe the amount of dispersion a material will create...

...ranges are from 59 (CR-39) to 30 (polycarbonate)

Chromatic Aberration

Ophthalmic Lenses

Properties of Light Absorption

YellowBlue

50

Ophthalmic Lenses

Properties of Light

Absorption

Filters absorb light. Chemical compounds are used to selectively filter single colors.

To create a green filter, only red light must be absorbed. The appropriate chemicals are applied, and a green filter is created.

51

Ophthalmic Lenses

Properties of Light

Absorption

To create a perfectly neutral- or gray-filter, energy from all three primary points in the spectrum must be absorbed to the same degree.

When creating a filter by absorbing dye into resin, this process is further complicated by the inconsistent nature of the chemicals involved.

52

Ophthalmic Lenses

Properties of Light

Aberrations

The most common aberrations found in ophthalmic lenses are:

- Power Error
- Material Distortion
- Marginal Astigmatism
- Chromatic Aberration
- Unwanted Prism*

Aberrations

Aberrations occur due to various factors:

- Refractive power
- · Off-axis viewing of objects
- lens tilt
 peripheral objects
- Vertex distance
- Lens material

Ophthalmic Lenses Properties of Light Aberrations – Distortion The minus lens result is barrel distortion... ... the periphery of an object will be minimized to a greater degree than the center

Ophthalmic Lenses

Properties of Light

Aberrations – Distortion Plus lenses create the opposite effect...pincushion effect

Aspheric lenses reduce distortion

...the periphery of an object will be magnified to a greater degree than the center

HHT	
HIT.	Ħ
H	H

56

55

Ophthalmic Lenses

Properties of Light

Aberrations – Marginal Astigmatism Light striking the lens at an oblique axis do not refract evenly...

...unwanted astigmatism occurs

57

Ophthalmic Lenses

Properties of Light

Aberrations - Chromatic Aberration - failure of lens to focus light

As previously discussed, chromatic aberration is the dispersion of white light into its component colors...

...large amounts of prism are necessary for chromatic aberration to affect vision

58

Ophthalmic Lenses

Properties of Light

Prism

The eye does not always view objects through the optical center...

Ophthalmic Lenses

There are many types of lenses designed to meet specific patient needs...

- Single Vision
- Distance Vision
 Near & Intermediate Vision
- Bifocals
- Flat Tops
 Executive
 Trifocals
- Progressive Addition Lenses

Ophthalmic Lenses

61

63

Ophthalmic Lenses Lens Types – Single Vision

62

Vertex Distance – Pantoscopic Tilt

- When the frames are moved out on a patients face should be the same distance
 - Minus lens get weaker
 - Plus lenses get stronger
 - Dot the frame where the bend is suppose to be on the patient
- Pantoscopic Tilt the frame should be the same distance from the forehead and the cheek bone

Ophthalmic Lenses

Lens Types – Single Vision

Single vision lenses require measurement of pupillary distance, and occasionally fitting height...

64

Ophthalmic Lenses

Lens Types – Bifocals

Bifocal lenses have two focal lengths...

Ophthalmic Lenses Lens Types – Bifocals

Flat-top bifocals are usually fit:

- to lower limbus (seg line @ lower lid)
- decentered 1.5mm in from Far PD

Ophthalmic Lenses

67

...generally, the intermediate ADD is 50% of the near ADD

68

• Digital lenses are different

71

Near

Ophthalmic Lenses (Old School) Lens Types - Progressives

Progressives are usually fit: • at pupil center

Ophthalmic Lenses

Lens Types – Progressives

PALs require precise fitting if the lens is to perform to its potential, this necessitates:

- Monocular pupillary distances
- · Verification of fitting height
- · Proper frame adjustment

74

Frame Adjustment - Pantoscopic Angle

Polarizing filters

Photochromic or self-tinting lenses

Polarizing filters help eliminate unwanted light reflections off shiny surfaces such as glass or glossy coatings. Polarizing filters work like a narrow grid, allowing only waves oscillating parallel to the grid bars to pass. Light rays hitting the grid at an angle of 90° are fully blocked. Light reflected of horizontal planes is 100 percent

DIGLECT. LIGHT FERECEED OFF NONZONTAI planes is 100 percent polarized. Polarizing filters take advantage of this effect. The more the oscillating angle deviates from the grid orientation, the less light passes through the filter.

A photochromic lens changes in its transmission when exposed to UV light. The following factors influence the light transmission and darkening speed: type of light, light intensity, exposure time and lens temperature. The darkening technology is based on self-timiting molecules its tach ange their structure. Since these molecules constantify each to the presence of UV light, the spectacle lenses perfectly adopt the tint to the light conditions appendix of the time to the light conditions and the set of t

· Increase panto - bend both temples down

· Decrease panto - bend both temples up Increasing panto will raise the frame front height on the face; however, it will effectively lower the multifocal and vice

versa

75

Ophthalmic Lenses

Lens Types – Progressives

There are literally hundreds of PAL designs availableeach with unique characteristics...

- Traditional
- hard design
 soft design
- monodesign multidesign
- Short Corridor Customized
- Task Specific

76

Basic Formulas

Calculations

There are perhaps two calculations every person who works with eyewear MUST know ...

- Prentice's Rule: named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: {display style P=cf/10}
- Box Measurements: In 1962 the Optical Manufacturers Association adopted the **boxing system** to provide a standard for frame and lens measurement that greatly improved upon the accuracy of previous systems. The boxing system is based upon the idea of drawing an imaginary box around a lens shape with the box's sides tangent to the outer most edges of the shape.

https://youtu.be/N7XgtoMII8A

77

Lens Coatings

Basic Formulas Box Measurements Measurements of the frames- and the eye's relationship to them- should be specified... RPD - LPD

Basic Formulas

80

82

Prism

81

79

Prescriptions: Verification

- Geneva Lens Clock
- Base curve
 Colmascope or Polariscope Progressive add markings
- Calipers Lens thickness

Prism Verification Prescriptions: Focal Length Calculations... • Formula: (in meters) = F=1/D **.** (†) Focal length in meters (f) =

1 / D (reciprocal of power in diopters) Example: The focal length of 2.00 D lens: f = 1 / 2.00 D f = .5 meter

velength is measured from _____ to ___ _ of waves?

86

Frames: Parts & Verification Verification · Eye wire size Bridge Temple length How do you determine the frame PD?

- Photochromatic/mirrors/etc.

vernynx		
Frame adjust		
Verify OC centers		
PD		
Seg hts		
Vertex Distance		
Coatings		
Lens design		
Prism		
Warpage		
Position on		

Troubleshooting Problem Lensometer Lens Clock PD stick

- Verify SRx from provider
- Neutralized the glasses
- Use the troubleshooting guide
- 4-point stance
- Facial contact points
- Lens material
- Lens coatings
- PPD and FPD ... prismatic effect

85

Information assistance provided by Essilor (Pete Hanlin)