OCT Angiography
Spencer Johnson, O.D., F.A.A.O
Oklahoma College of Optometry
johns137@nsuok.edu

- Time-domain
 - Commercially available in the US in 2002
 - Zeiss Time-domain OCT (Carl Zeiss Meditec, Dublin, CA)

- Spectral domain technology in 2006
 - FDA approval in 2006
 - Vastly improved resolution
 - Motion correction technology

- Instruments
 - Optovue Avanti
 - Zeiss CIRRUS
 - Heidelberg Spectralis
 - Topcon 3D – FDA approval July 2007

- Swept source OCT
 - Faster – less motion artifact
 - Invisible light source

- Instruments
 - Topcon DRI OCT Triton
 - FDA approval in January 2018
 - posterior and anterior segment OCT, color, and red free imaging. FA and FAF photography available on the Plus model. OCTA available outside of the US
 - PLEX Elite 9000, Carl Zeiss Meditec, FDA approval for research November 2016
• OCT Angiography
 • Images retinal blood flow

• Technology
 • Zeiss AngioPlex – FDA approval, September 2015
 • Optovue AngioVue – FDA approval February 2016; AngioAnalytics and 3D PAR (projection artifact removal) FDA approval June 2018
 • Heidelberg Spectralis OCTA – FDA approval September 2018
 • Topcon DRI OCT Triton
 • Swept source OCT
 • Angiography option not available in the US

• Traditional imaging modalities for retinal blood flow

• Fluorescein angiography (FA)
 • Introduced in 1961
 • Risks with injection of a dye involve nausea, vomiting, and anaphylactic shock
 • Change in use among retinal specialists in recent years

• Indocyanine green (ICG)
 • Used occasionally
 • Evaluation of the deeper choroidal circulation

• OCTA advantages over traditional imaging modalities
 • Better delineating of the foveal avascular zone (FAZ)
 • Better imaging of capillary dropout
• Disadvantages of OCTA as compared with traditional imaging modalities
 • Poor technique for peripheral imaging
 • Unable to show leakage, pooling, or areas of very slow flow such as aneurysm

• Review the appearance of retinal layers on OCT and the location of vascular zones
 • Superficial capillary plexus or network – lies in the nerve fiber layer or ganglion cell layer
 • Deep capillary plexus – lies in the inner nuclear layer near the outer plexiform layer

• OCTA imaging
 • Check for artifact, media opacity, high refractive error, truncation, shadowing, and accurate segmentation
 • Pay attention to foveal avascular zone, vessel density numbers, capillary dropout, and microaneurysms

• Case studies – most commonly used for AMD, diabetic retinopathy, glaucoma, and vascular occlusive disease

• Diabetic retinopathy
 • Capillary dropout
 • Foveal avascular zone
 • Neovascularization

• Macular degeneration
 • Detection of CNVM
 • Caution with segmentation as retinal cytoarchitecture may be disrupted, especially with larger drusen
• Glaucoma
 • Visualize decreased papillary, peripapillary, and macular perfusion in glaucoma eyes compared with normal eyes

• Other conditions
 • Trauma
 • Branch vein occlusion